ORIGINAL ARTICLE

CODEN: AAJMBG

A 5 year (2005-2009) review of antimicrobial susceptibility of clinical Klebsiella pneumoniae isolates from pediatric patients in Jordan

Mohammad Al-Shara*

Department of Pharmacology, Faculty of Nursing, Irbid National University, Irbid, Jordan

Abstract: *Aim of the Study:* The present study was conducted to investigate antimicrobial susceptibility pattern of Klebsiella pneumoniae strains isolated from clinical specimens of Jordanian pediatric patients during a five year period from 2005-2009. A total of 1023 Klebsiella pneumoniae strains were isolated from clinical specimens and tested for their susceptibility to different antimicrobial drugs. Main findings: Overall, high susceptibility rate was recorded for ciprofloxacin (90.5%), followed by norfloxacin (84.8%), imipenem (69.9%), nalidixic acid (66.6%), and cefixime (63.9%). Low susceptibility rate was recorded for ampicillin (16.6%), followed by amoxicillin-clavulanic acid (22.5%), tobramycin (28.6%), amikacin (31.4%), cotrimoxazole (37.3%), and aztreonam (39.3%), *Conclusion:* most of β -lactam antibiotics as well as tobramycin, amikacin, cotrimoxazole, and aztreonam, should not be used in treating infections caused by pathogenic K. pneumoniae and other related bacteria in Jordan. However, quinolone compounds and imipenem seem to be effective in treatment of infections caused by pathogenic K. pneumoniae in children. **Keywords:** Antimicrobial resistant, Klebsiella pneumoniae, pediatric patients.

Introduction

Bacterial resistance has been emerging and become major public health problem worldwide. Infections results from resistant bacteria have been shown to be more frequently associated with increased morbidity and mortality than those caused by susceptible pathogens [1]. This had led to both clinical and financial implications for the treatment of infected patients [2]. Klebsiella pneumoniae is an important cause of morbidity and mortality [3]. It is a common cause of nosocomial infection causing urinary tract infections. pneumonia, and intraabdominal infections [4-5]. Many studies have demonstrated increases in antimicrobial resistance among K. pneumoniae in several countries [6-7].

Despite world-wide use of antibiotics, the distribution of the resistance is far from being uniform even in the same area [8]. Therefore, continuous surveillance is necessary to monitor changes in antimicrobial susceptibilities. Such information is important for clinician in their choice of therapy. However, there is little information on antimicrobial resistance pattern of K. pneumoniae in Jordan. Therefore, this retrospective study was conducted to determine the rate of resistance to antibiotics by K.

pneumoniae strains isolated from cultures of different clinical specimens received from pediatric patients at Princess Rahmah Hospital during a five year period of 2005-2009.

Material and Methods

This study was carried out in the diagnostic Medical Microbiology Laboratory of Princess Rahmah Hospital located in Irbid, Jordan, during the year of 2005-2009. A total of 1023 bacterial isolates were identified from different clinical specimens using standard bacteriological methods. These clinical specimens included blood, urine, ear swabs and conjunctival swabs. Microbiological and antibacterial susceptibility data of this study obtained from records of diagnostic Medical Microbiology Laboratory of Princess Rahmah Hospital. These data were filled in a prepared data sheet. Antimicrobial susceptibility patterns of these isolates to antibiotics were determined using the Kirby-Bauer method of disc diffusion test [9]. The isolates were tested the following antimicrobials; against amoxicillin-clavulanic amikacin, acid. ampicillin, aztreonam, cefaclor, cefixime, cefotaxime, ceftazidime, ceftriaxone, cephlexin, ciprofloxacin, cotrimoxazole. gentamicin, imipenem, nalidixic acid, norfloxacin, pipracillin and tobramycin. Data were analyzed using SPSS (version15 for Windows) to calculate the frequencies and cross tables. Study protocol was approved by the Ethics Committee of the Ministry of Health in Jordan (MOH, REC, 08, 0057).

Results

During a five year period (2005-2009), a total of 1023 positive K. pneumoniae cultures of pediatric patients aged below 15 years old were studied. The distribution of K. pneumoniae strains from

various clinical specimens was 628 (61.4%) from urine, 354 (34.7%) from blood, 22 (2.1%) from ear swabs and 19 (1.8%) from eye swabs, (Table 1).

Overall, high susceptibility rate was recorded for ciprofloxacin (90.5%), followed by norfloxacin (84.8%), imipenem (69.9%), nalidixic acid (66.6%), and cefixime (63.9%). Low susceptibility rate was recorded for ampicillin (16.6%), followed by amoxicillinclavulanic acid (22.5%), tobramycin (28.6%), amikacin (31.4%), cotrimoxazole (37.3%), and aztreonam (39.3%), (Table 2).

Table-1: Distribution of Klebsiella isolates in clinical specimens									
Clinical specimen	Year								
	2005	2006	2007	2008	2009	Total %			
Urine	107	142	132	119	128	628			
Blood	69	34	61	34	156	354			
Ear swab	7	6	2	5	2	22			
Eye swab	3	5	3	7	1	19			
Among all specimens	186	187	198	165	287	1023			

Table-2: Susceptibility rate of Klebsiella isolates from children to various antimicrobials										
Number (%) of Klebsiella	2005 N= 186	2006 N= 187	2007 N= 198	2008 N= 165	2009 N= 287	Total N= 1023	Significance 2005 vs. 2009			
susceptible to	N (S %)	P-value								
AMC	41 (36.5)	108 (28.7)	132 (27.2)	111 (22.5)	207 (13.5)	599 (22.5)	< 0.001			
AMK	68 (44.1)	42 (33.3)	65 (40.0)	42 (47.6)	171 (18.7)	388 (31.4)	< 0.001			
AMP	62 (9.6)	132 (3.7)	150 (10.6)	111 (7.2)	99 (57.5)	554 (16.6)	< 0.001			
AZT	72 (36.1)	69 (47.8)	114 (55.2)	33 (21.2)	73 (17.8)	361 (39.3)	0.013			
CAZ	85 (74.1)	42 (76.1)	52 (38.4)	62 (56.4)	188 (43.0)	429 (53.8)	< 0.001			
CEC	65 (50.7)	36 (80.5)	101 (60.3)	115 (51.3)	113 (57.5)	430 (57.4)	0.386			
CFX	45(60.0)	48 (66.6)	34 (47.0)	91 (56.0)	85 (50.5)	303 (55.7)	0.310			
CF	38 (50.0)	121 (81.8)	139 (68.3)	76 (56.5)	117 (49.5)	491 (63.9)	0.964			
CPR	170 (91.1)	133 (83.4)	164 (92.0)	144 (93.0)	161 (91.9)	772 (90.5)	0.807			
COT	77 (38.9)	122 (45.9)	131 (33.5)	104 (38.4)	86 (27.9)	520 (37.3)	0.136			
CTR	70 (41.4)	40 (20.0)	179 (62.5)	35 (17.1)	129 (37.9)	453 (45.0)	0.637			
CTX	127 (64.5)	159 (72.3)	63 (26.9)	141 (56.7)	280 (41.2)	770 (54.0)	< 0.001			
GEN	138(63.0)	159 (68.5)	181 (61.3)	133 (59.3)	252 (43.2)	863 (57.3)	< 0.001			
IMP	73 (54.7)	55 (38.1)	64 (68.7)	33 (12.1)	208 (93.2)	433 (69.9)	< 0.001			
NAL	106 (70.7)	134 (65.5)	125 (66.4)	113 (66.3)	116 (62.9)	594 (66.3)	0.219			
NOR	95 (84.2)	138 (80.4)	129 (86.0)	110 (86.3)	108 (87.9)	580 (84.8)	0.445			
PIP	56 (25.0)	65 (47.6)	62 (62.9)	34 (11.7)	162 (69.1)	379 (52.7)	< 0.001			
TOB	64 (32.8)	54 (42.5)	79 (43.0)	38 (21.0)	152 (16.4)	387 (28.6)	0.007			

Number of isolates (N), Sensitive (S), Not significant (NS)

Amoxicillin-Clavulanic acid (AMC), Amikacin (AMK), Ampicillin (AMP), Aztreonam (AZT), Ceftazidime (CAZ), Cefaclor (CEC), Cefixime (CF), Cephlexin (CFX), Cotrimoxazole (COT), Ciprofloxacin (CPR), Ceftriaxone (CTR), Cefotaxime (CTX), Gentamicin (GEN), Imipenem (IMP), Nalidixic acid (NAL), Norfloxacin (NOR), Pipracillin (PIP) and Tobramycin (TOB)

Discussion

This current study provides information regarding the distribution of pathogenic K. pneumoniae isolates and its antimicrobial susceptibility patterns in pediatric patients. Most K. pneumoniae strains isolated was from urine samples 628 (61.4%) followed by 354 (34.7%) from blood, 22 (2.1%) from ear swabs and 19 (1.8%) from eye swabs.

In this study, Klebsiella pneumoniae showed improvement in its susceptibility rate to ampicillin, cefaclor, cefixime, ciprofloxacin, imipenem, norfloxacin and pipracillin and this improvement was significant (P<0.05) to ampicillin, imipenem and pipracillin in comparison between the year of 2005 vs 2009. This may be because quinolone and other compounds are relatively not in common use by the population as compared to β-lactam antibiotics [12].

However, results of this study showed significant decreased (P<0.05) of susceptibility rates of K. pneumoniae isolates to amikacin, amoxicillinclavulanic acid, aztreonam, ceftazidime, gentamicin, and tobramycin in cephlexin, comparison between the year of 2005 vs 2009. In addition, K. pneumoniae showed decreased of their susceptibility rates to cefotaxime, cotrimoxazole, ceftriaxone, and nalidixic acid, but that decrement was not significant (P>0.05). Similar findings regarding high potentials for developing resistance for pathogenic isolates of K. pneumoniae were reported [10-14]. It seems that the prevalence of antibiotic resistance of K. pneumoniae to commonly used antimicrobial drugs in Jordan has increased over the last 15 years, in comparison to previous studies [15-16]. Result of this study disagreed with previous study conducted in 2004 in Jordan which demonstrate

relatively low rate of resistance [15]. At that time, Tumah [15] found that more than 90% of K. pneumoniae isolates were sensitive to above antibiotics. This increase in the resistance rate is may due to the widespread and lengthy use of these antibacterial drugs in the world including Jordan. Over a period of this study, results showed higher resistance rates of K. pneumoniae to β -lactam antibiotics compared with other studies conducted previously in Jordan [16-17] and elsewhere [18-19].

There are many possible reasons for increasing resistant rate of K. pneumoniae to common used antimicrobial drugs, including inappropriate and incorrect administration of antimicrobial agents in empiric therapies and lack of appropriate infection control strategies [19-20]. This problem indicates importance of performing antibiotic susceptibility testing before blind antibiotic therapy.

Conclusion

The data suggest that most of β -lactam antibiotics as well as amikacin, aztreonam, cotrimoxazole and tobramycin should not be used in treating infections caused by pathogenic K. pneumoniae and other related bacteria in Jordan. However, quinolone compounds and gentamicin seem to be effective in treatment of infections caused by pathogenic K. pneumoniae. These findings also reinforce the need for ongoing investigation to show trends in antibiotic resistance, which can help clinicians provide safe and effective empiric therapies. Moreover, resistance studies assist health authorities in the formulation of their own drug policies.

References

- Travers K. and Barza M. Morbidity of infections caused by antimicrobial-resistant bacteria. *Clin Infec. Dis* 2002; 34: S131-S134.
- 2. Byarugaba DK. A View on antimicrobial resistance in developing countries and responsible risk factors. *In. J Antimicrob. Agents* 2004; 24:105–10.
- 3. Tsay RW, Siu LK, Fung CP, Chang FY. Characteristics of bacteraemia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor

for mortality and the impact of capsular serotypes as a herald for community-acquired infection. *Arch Intern Med* 2002; 162:1021-7.

- 4. Watanakunakorn C, Jura J. Klebsiella bacteremia: a review of 196 episodes during a decade (1980-1989). *Scand J Infect Dis* 1991; 23:399-405.
- 5. Yinnon AM, Butnaru A, Raveh D, Jerassy Z, Rudensky B. Klebsiella bacteraemia: community versus nosocomial infection. *QJM* 1996;89:933-41.

- Paterson DL, Ko WC, Von Gottberg A. Mohapatra S, Casellas JM, Goossens H, et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial infections. *Ann Intern Med* 2004; 140: 26-32.
- Pena C, Pujol M, Ardanuy C, Ricart A, Pallares R, Linares J, et al. Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum beta-lactamases. Antimicrob. Agents. *Chemother* 1998; 42: 53-8.
- Burwen DR, Banerjee SN, Gaynes RP. Ceftazidime resistance among selected nosocomial gram-negative bacilli in the United States. *J Infect Dis* 1994; 170: 1622-1625.
- 9. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized simple disc method. *Am J Clin Pathol* 1960; 45: 493.
- Neonakis IK, Samonis G, Messaritakis H, Baritaki S, Georgiladakis A, Maraki S, et al. Resistance Status and Evolution Trends of *Klebsiella pneumoniae* Isolates in a University Hospital in Greece: Ineffectiveness of Carbapenems and Increasing Resistanceto Colistin. *Chemotherapy* 2010; 56: 448–452.
- 11. Ullah Malik SA and Ahmed J. Antimicrobial susceptibility pattern and ESBL prevalence in *Klebsiella pneumoniae* from urinary tract infections in the North-West of Pakistan. *Afr J Microbiol Res* 2009; 3(11):676-680.
- 12. Reshedko G, Ryabkova E, Kretchikova O, Sukhorukova M, Edelstein M. and RosNet Group. Antimicrobial resistance among nosocomial Klebsiella Pneumoniae from Russian intensive care units (ICUs). 2005-e-800-127. Available from http://www.antibiotic.ru/files/pdf/en/icaac.
- 13. Atif AA, Osman H, Alawayia MM, Hassan AM, Abdalla BA, Karrar Z, et al. Antimicrobial agent

resistance in bacterial isolates from patients with diarrhea and urinary tract infection in the Sudan. *Am J Trop Med Hyg* 2000; 63: 259-63.

- 14. Tumah H. In vitro study of antibacterial activity of cefepime and cefpirome against Gram-negative clinical isolates, compared with those of nine broad-spectrum agents. *Acta Pharmaceutica Turcica* 2004; 46:67-72.
- Youssef MT, Malkawi HI, Shurman AA, Andremont AO. Molecular typing of multiresistant Klebsiella pneumoniae isolated from children from Northern Jordan. J Trop Pediatr 1999; 45:271-277.
- Shehabi AA, Mahafzah A, Badran I, Qadar FA, Dajani N. High incidence of Klebsiella pneumoniae clinical isolates to extended-spectrum B-lactam drugs in intensive care units. *Diag Microbiol Infect Dis* 2000; 36:53-6.
- 17. Shamweel A, Nami FA, Faris QA, Essam HM, Osama EB. Prevalence, antibiotic susceptibility pattern and production of extended-spectrum βlactamases amongst clinical isolates of Klebsiella pneumoniae at armed forces hospital in saudi arabia. J Coll Physici Surg Pak 2009;19: 264-265.
- Pornpimol P, Pisespong P, Benjapa U. In vitro activity of imipenem, aztreonam, amoxicillinclavulanic acid and ciprofloxacin against multiresistant Klebsiella pneumoniae. J Infect Dis Antimicrob Agent 1993; 10:9-11.
- Zakaria EA. Increasing ciprofloxacin resistance among prevalent urinary tract bacterial isolates in Gaza Strip, Palestine. *J Bio Biotech* 2005;3:238-41.
- Dimitriv TS, Udo EE, Emara M, Awni F, Passadilla R. Etiology and anti-biotic susceptibility patterns of community- acquired urinary tract infections in a Kuwait Hospital. *Med Princ Pract* 2004;13:334-39.

*All correspondences to: Dr. Mohammad Al-Shara, Ph.D Pharmacology, Assistant Prof of Pharmacology, Faculty of Nursing, Irbid National University, Irbid, Jordan. E-mail ID: alshara_70@yahoo.com